Surface modification of carbon nanotubes and their nanocomposites for fuel cell applications: A review

Author:

Okafor Okechukwu1,Popoola Abimbola1,Popoola Olawale2,Adeosun Samson3

Affiliation:

1. Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology, P.M.B X680, Pretoria, South Africa

2. Electrical Engineering, Tshwane University of Technology, P.M.B X680, Pretoria, South Africa

3. Affiliation Metallurgical and Materials Engineering, University of Lagos, Yaba, Lagos, 23401, Nigeria

Abstract

<abstract> <p>Carbon nanotubes (CNTs) have drawn great attention as potential materials for energy conversion and storage systems such as batteries, supercapacitors, and fuel cells. Among these energy conversion and storage systems, the fuel cells had stood out owing to their high-power density, energy conversion efficiency and zero greenhouse gasses emission. In fuel cells, CNTs have been widely studied as catalyst support, bipolar plates and electrode material due to their outstanding mechanical strength, chemical stability, electrical and thermal conductivity, and high specific surface area. The use of CNT has been shown to enhance the electrocatalytic performance of the catalyst, corrosion resistivity, improve the transmission performance of the fuel cell and reduce the cost of fuel cells. The use of CNTs in fuel cells has drastically reduced the use of noble metals. However, the major drawback to the utilization of pristine CNTs in fuel cells are; poor dispersion, agglomeration, and insolubility of CNTs in most solvents. Surface engineering of CNTs and CNT nanocomposites has proven to remarkably remedy these challenges and significantly enhanced the electrochemical performance of fuel cells. This review discusses the different methods of surface modification of CNTs and their nanocomposite utilized in fuel cell applications. The effect of CNTs in improving the performance of fuel cell catalyst, membrane electrode assembly and bipolar plates of fuel cells. The interaction between the CNTs catalyst support and the catalyst is also reviewed. Lastly, the authors outlined the challenges and recommendations for future study of surface functionalized CNTs composite for fuel cell application.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3