Agglomeration and dissolution of iron oxide nanoparticles in simplest biological media

Author:

Godymchuk Anna1,Ilyashenko Alexey2,Konyukhov Yury3,Offor Peter Ogbuna4,Baisalova Galiya5

Affiliation:

1. Department of Material Science, Tomsk Polytechnic University, 30 Lenina avenue, 634050, Tomsk, Russia

2. Joint-Stock Company "Scientific and Industrial Centre Polyus", 56V Kirova Avenue, 634050, Tomsk, Russia

3. Department of Functional Nanosystems and High Temperature Materials, National University of Science and Technology "MISiS", 4 Leninsky avenue, 119049, Moscow, Russia

4. Metallurgical and Materials Engineering Department, Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, 410001, Nsukka, Nigeria

5. Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev Street, 010008, Astana, Kazakhstan

Abstract

<abstract> <p>Despite high medical and biological potential, the penetration of iron oxide nanoparticles (NPs) into a human body can cause their dissolution with subsequent accumulation of highly toxic iron compounds. The paper describes the agglomeration and dissolution behavior of differently sized α-Fe<sub>2</sub>O<sub>3</sub> NPs in the simplest biological solutions. The average sizes of the initial NPs according to the BET analysis are 12, 32, and 115 nm. Within 30–60 min exposure, the particle size and concentration of iron released into the solutions increases in the suspensions, accompanied by an intensive change of NPs surface charge. After an hour of exposure, the colloidal properties do not change significantly, although the dissolution degree ambiguously fluctuates. It has been shown that the agglomeration of the particles in the simplest pulmonary fluid is lower than in the simplest sweat fluid, compared to the dissolution degree, which is much higher in the pulmonary fluid than in the sweat. The colloidal stability of suspensions reduces with a decrease of NPs' size, e.g., the average size of particles is 315,289, and 248 nm, while zeta potential is 2, 9, and 17 mV, respectively for 12, 32, and 115 nm NPs in 3-hour suspensions. It has been found that 24 h dissolution degree of α-Fe<sub>2</sub>O<sub>3</sub> NPs reaches 2.3% and 0.4%, respectively, in the simplest pulmonary and sweat fluids. The mechanism of dissolution of hematite NPs in the slightly acidic and acidic mediums is proposed.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3