Energy consumption and surface roughness maps for low and moderate speed machining of Aluminum alloy 2014: An experimental study

Author:

Shaukat Umer1,Gohari Soheil2,Molla Tesfaye2

Affiliation:

1. Department of Mechanical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan

2. Department of Mechanical Engineering, the University of Melbourne, Parkville, VIC 3010, Australia

Abstract

<abstract> <p>The rising energy prices and soaring environmental concerns have put an immense pressure on the wide usage of machining processes. The total power consumption during machining includes the power consumed by the machine itself and the power used to remove the material from the workpiece. An accurate prediction of energy consumption during the machining process is the basis for energy reduction. In this study, the specific cutting energy and surface finish for low and moderate-speed orthogonal machining of the aluminum alloy 2014 are evaluated. The measured values for the specific cutting energy and surface roughness are presented as maps on a grid, which is based on the machining parameters including the following: (1) cutting speed and (2) undeformed chip thickness. The specific cutting energy map depicts low energy consumption values of 0.52 J/mm<sup>3</sup> for the aluminum alloy 2014 at medium speed machining. The roughness maps depict high roughness values at high cutting speeds. Both maps help in optimizing the machining process to achieve a required surface roughness with minimal energy consumption. A review of a specific cutting energy map demonstrates that energy consumption decreases by increasing the cutting speeds. The decrease in energy consumption at moderate speeds corresponds to the low cutting forces. This potentially happens as a result of thermal softening of the material caused by adiabatic heating. This subsequently leads to an increase in the machinability of the aluminum alloy 2014 at moderate cutting speeds. Furthermore, the decreasing chip thickness and increasing shear angle as a result of increasing the cutting speed confirms the increased machinability of the workpiece at moderate speeds.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3