Torque control strategy of electric racing car based on acceleration intention recognition

Author:

Yuan Anlu,Zhang Tieyi,Xiong Lingcong,Zhang Zhipeng

Abstract

<abstract> <p>A torque control strategy based on acceleration intention recognition is proposed to address the issue of insufficient power performance in linear torque control strategies for electric racing cars, aiming to better reflect the acceleration intention of racing drivers. First, the support vector machine optimized by the sparrow search algorithm is used to recognize the acceleration intention, and the running mode of the racing car is divided into two types: Starting mode and driving mode. In driving mode, based on the recognition results of acceleration intention, fuzzy control is used for torque compensation. Based on the results of simulation and hardware in the loop testing, we can conclude that the support vector machine model optimized using the sparrow search algorithm can efficiently identify the acceleration intention of racing drivers. Furthermore, the torque control strategy can compensate for positive and negative torque based on the results of intention recognition, significantly improving the power performance of the racing car.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3