Improved beluga whale optimization algorithm based cluster routing in wireless sensor networks

Author:

Yuan Hao1,Chen Qiang1,Li Hongbing23,Zeng Die1,Wu Tianwen1,Wang Yuning2,Zhang Wei23

Affiliation:

1. Chongqing Key Laboratory of Geological Environmental Monitoring and Disaster Early Warning in the Three Gorges Reservoir Area, Chongqing Three Gorges University, Chongqing 404120, China

2. Internet of Things and Intelligent Control Technology Chongqing Engineering Research Center, Chongqing Three Gorges University, Chongqing 404120, China

3. Chongqing Municipal Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges University, Chongqing 404120, China

Abstract

<abstract><p>Cluster routing is a critical routing approach in wireless sensor networks (WSNs). However, the uneven distribution of selected cluster head nodes and impractical data transmission paths can result in uneven depletion of network energy. For this purpose, we introduce a new routing strategy for clustered wireless sensor networks that utilizes an improved beluga whale optimization algorithm, called tCBWO-DPR. In the selection process of cluster heads, we introduce a new excitation function to evaluate and select more suitable candidate cluster heads by establishing the correlation between the energy of node and the positional relationship of nodes. In addition, the beluga whale optimization (BWO) algorithm has been improved by incorporating the cosine factor and t-distribution to enhance its local and global search capabilities, as well as to improve its convergence speed and ability. For the data transmission path, we use Prim's algorithm to construct a spanning tree and introduce DPR for determining the optimal route between cluster heads based on the correlation distances of cluster heads. This effectively shortens the data transmission path and enhances network stability. Simulation results show that the improved beluga whale optimization based algorithm can effectively improve the survival cycle and reduce the average energy consumption of the network.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3