Bearing fault diagnosis with parallel CNN and LSTM

Author:

Fu Guanghua,Wei Qingjuan,Yang Yongsheng

Abstract

<abstract> <p>Intelligent diagnosis of bearing faults is fundamental to machinery automation and their intelligent operation. Deep learning-based analysis of bearing vibration data has emerged as one research mainstream for fault diagnosis. To enhance the quality of feature extraction from bearing vibration signals and the robustness of the model, we construct a fault diagnostic model based on convolutional neural network (CNN) and long short-term memory (LSTM) parallel network to extract their temporal and spatial features from two perspectives. First, via resampling, vibration signal is split into equal-sized slices which are then converted into time-frequency images by continuous wavelet transform (CWT). Second, LSTM extracts the time-correlation features of 1D signals as one path, and 2D-CNN extracts the local frequency distribution features of time-frequency images as another path. Third, 1D-CNN further extracts integrated features from the fusion features yielded by former parallel paths. Finally, these categories are calculated through the softmax function. According to experimental results, the proposed model has satisfactory diagnostic accuracy and robustness in different contexts on two different datasets.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trailblazing Strategies for Solar Panel Maintenance: Employing VGG19 for Early Detection of Damage;2024 International Conference on Intelligent Systems for Cybersecurity (ISCS);2024-05-03

2. Innovative Solutions for Solar Panel Maintenance: A VGG16-Based Approach for Early Damage Detection;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

3. Research on an Improved Wasserstein Generative Adversarial Network Early Fault Warning Method for Rotating Machinery;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3