The diffusion identification in a SIS reaction-diffusion system

Author:

Coronel Aníbal1,Huancas Fernando2,Hess Ian1,Tello Alex3

Affiliation:

1. GMA, Departamento de Ciencias Básicas-Centro de ciencias Exactas CCE-UBB, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Chillán 3780000, Chile

2. Departamento de Matemática, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras No. 3360, Ñuñoa-Santiago 7750000, Chile

3. Departamento de Matemáticas, Universidad Andrés Bello, Autopista Concepción-Talcahuano 7100, Concepción, Talcahuano 4260000, Chile

Abstract

<abstract><p>This article is concerned with the determination of the diffusion matrix in the reaction-diffusion mathematical model arising from the spread of an epidemic. The mathematical model that we consider is a susceptible-infected-susceptible model with diffusion, which was deduced by assuming the following hypotheses: The total population can be partitioned into susceptible and infected individuals; a healthy susceptible individual becomes infected through contact with an infected individual; there is no immunity, and infected individuals can become susceptible again; the spread of epidemics arises in a spatially heterogeneous environment; the susceptible and infected individuals implement strategies to avoid each other by staying away. The spread of the dynamics is governed by an initial boundary value problem for a reaction-diffusion system, where the model unknowns are the densities of susceptible and infected individuals and the boundary condition models the fact that there is neither emigration nor immigration through their boundary. The reaction consists of two terms modeling disease transmission and infection recovery, and the diffusion is a space-dependent full diffusion matrix. The determination of the diffusion matrix was conducted by considering that we have experimental data on the infective and susceptible densities at some fixed time and in the overall domain where the population lives. We reformulated the identification problem as an optimal control problem where the cost function is a regularized least squares function. The fundamental contributions of this article are the following: The existence of at least one solution to the optimization problem or, equivalently, the diffusion identification problem; the introduction of first-order necessary optimality conditions; and the necessary conditions that imply a local uniqueness result of the inverse problem. In addition, we considered two numerical examples for the case of parameter identification.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3