A self-supervised fusion network for carotid plaque ultrasound image classification

Author:

Zhang Yue1,Gan Haitao1,Wang Furong2,Cheng Xinyao3,Wu Xiaoyan4,Yan Jiaxuan1,Yang Zhi1,Zhou Ran1

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China

3. Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430068, China

4. Cardiovascular Division, Zhongnan Hospital, Wuhan University, Wuhan 430068, China

Abstract

<abstract><p>Carotid plaque classification from ultrasound images is crucial for predicting ischemic stroke risk. While deep learning has shown effectiveness, it heavily relies on substantial labeled datasets. Achieving high performance with limited labeled images is essential for clinical use. Self-supervised learning (SSL) offers a potential solution; however, the existing works mainly focus on constructing the SSL tasks, neglecting the use of multiple tasks for pretraining. To overcome these limitations, this study proposed a self-supervised fusion network (Fusion-SSL) for carotid plaque ultrasound image classification with limited labeled data. Fusion-SSL consists of two SSL tasks: classifying image block order (Ordering) and predicting image rotation angle (Rotating). A dual-branch residual neural network was developed to fuse feature presentations learned by the two tasks, which can extract richer visual boundary shape and contour information than a single task. In this experiment, 1270 carotid plaque ultrasound images were collected from 844 patients at Zhongnan Hospital (Wuhan, China). The results showed that Fusion-SSL outperforms single SSL methods across different percentages of labeled training data, ranging from 10 to 100%. Moreover, with only 40% labeled training data, Fusion-SSL achieved comparable results to a single SSL method (predicting image rotation angle) with 100% labeled data. These results indicate that Fusion-SSL could be beneficial for the classification of carotid plaques and the early warning of a stroke in clinical practice.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3