Advancements in enhancing cyber-physical system security: Practical deep learning solutions for network traffic classification and integration with security technologies
-
Published:2023
Issue:1
Volume:21
Page:1527-1553
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Gaba Shivani1, Budhiraja Ishan1, Kumar Vimal1, Makkar Aaisha2
Affiliation:
1. School of Computer Science Engineering and Technology, Bennett University, Greater Noida U.P., India 2. Department of Computer Science, College of Science and Engineering, University of Derby, UK
Abstract
<abstract><p>Traditional network analysis frequently relied on manual examination or predefined patterns for the detection of system intrusions. As soon as there was increase in the evolution of the internet and the sophistication of cyber threats, the ability for the identification of attacks promptly became more challenging. Network traffic classification is a multi-faceted process that involves preparation of datasets by handling missing and redundant values. Machine learning (ML) models have been employed to classify network traffic effectively. In this article, we introduce a hybrid Deep learning (DL) model which is designed for enhancing the accuracy of network traffic classification (NTC) within the domain of cyber-physical systems (CPS). Our novel model capitalizes on the synergies among CPS, network traffic classification (NTC), and DL techniques. The model is implemented and evaluated in Python, focusing on its performance in CPS-driven network security. We assessed the model's effectiveness using key metrics such as accuracy, precision, recall, and F1-score, highlighting its robustness in CPS-driven security. By integrating sophisticated hybrid DL algorithms, this research contributes to the resilience of network traffic classification in the dynamic CPS environment.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference44 articles.
1. J. Guo, M. Cui, C. Hou, G. Gou, Z. Li, G. Xiong, et al., Global-aware prototypical network for few-shot encrypted traffic classification, in 2022 IFIP Networking Conference (IFIP Networking), (2022), 1–9. https://doi.org/10.23919/IFIPNetworking55013.2022.9829771 2. S. Stryczek, M. Natkaniec, Internet threat detection in smart grids based on network traffic analysis using lstm, if, and svm, Energies, 16 (2023), 329. https://doi.org/10.3390/en16010329 3. H. Liu, B. Lang, Network traffic classification method supporting unknown protocol detection, in 2021 IEEE 46th Conference on Local Computer Networks (LCN), (2021), 311–314. https://doi.org/10.1109/LCN52139.2021.9525009 4. A. Barnawi, S. Gaba, A. Alphy, A. Jabbari, I. Budhiraja, V. Kumar, et al., A systematic analysis of deep learning methods and potential attacks in internet-of-things surfaces, Neural Comput. Appl., 2023 (2023), 1–16. https://doi.org/10.1007/s00521-023-08634-6 5. A. Yadav, S. Gaba, H. Khan, I. Budhiraja, A. Singh, K. K. Singh, Etma: Efficient transformer-based multilevel attention framework for multimodal fake news detection, IEEE Trans. Comput. Soc. Syst., 2023 (2023), forthcoming. https://doi.org/10.1109/TCSS.2023.3255242
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|