Multi-phase features interaction transformer network for liver tumor segmentation and microvascular invasion assessment in contrast-enhanced CT
-
Published:2024
Issue:4
Volume:21
Page:5735-5761
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Zhang Wencong12, Tao Yuxi3, Huang Zhanyao1, Li Yue4, Chen Yingjia1, Song Tengfei3, Ma Xiangyuan1, Zhang Yaqin3
Affiliation:
1. Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China 2. Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 3. Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China 4. School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
Abstract
<abstract>
<p>Precise segmentation of liver tumors from computed tomography (CT) scans is a prerequisite step in various clinical applications. Multi-phase CT imaging enhances tumor characterization, thereby assisting radiologists in accurate identification. However, existing automatic liver tumor segmentation models did not fully exploit multi-phase information and lacked the capability to capture global information. In this study, we developed a pioneering multi-phase feature interaction Transformer network (MI-TransSeg) for accurate liver tumor segmentation and a subsequent microvascular invasion (MVI) assessment in contrast-enhanced CT images. In the proposed network, an efficient multi-phase features interaction module was introduced to enable bi-directional feature interaction among multiple phases, thus maximally exploiting the available multi-phase information. To enhance the model's capability to extract global information, a hierarchical transformer-based encoder and decoder architecture was designed. Importantly, we devised a multi-resolution scales feature aggregation strategy (MSFA) to optimize the parameters and performance of the proposed model. Subsequent to segmentation, the liver tumor masks generated by MI-TransSeg were applied to extract radiomic features for the clinical applications of the MVI assessment. With Institutional Review Board (IRB) approval, a clinical multi-phase contrast-enhanced CT abdominal dataset was collected that included 164 patients with liver tumors. The experimental results demonstrated that the proposed MI-TransSeg was superior to various state-of-the-art methods. Additionally, we found that the tumor mask predicted by our method showed promising potential in the assessment of microvascular invasion. In conclusion, MI-TransSeg presents an innovative paradigm for the segmentation of complex liver tumors, thus underscoring the significance of multi-phase CT data exploitation. The proposed MI-TransSeg network has the potential to assist radiologists in diagnosing liver tumors and assessing microvascular invasion.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference64 articles.
1. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 71 (2021), 209–249. https://doi.org/10.3322/caac.21660 2. J. M. Llovet, R. K. Kelley, A. Villanueva, A. G. Singal, E. Pikarsky, S. Roayaie, et al., Hepatocellular carcinoma, Nat. Rev. Dis. Primers, 7 (2021), 6. https://doi.org/10.1038/s41572-020-00240-3 3. F. X. Bosch, J. Ribes, M. Díaz, R. Cléries, Primary liver cancer: worldwide incidence and trends, Gastroenterology, 127 (2004), S5–S16. https://doi.org/10.1053/j.gastro.2004.09.011 4. X. Wu, J. Li, C. Wang, G. Zhang, N. Zheng, X. Wang, Application of different imaging methods in the early diagnosis of primary hepatic carcinoma, Gastroenterol. Res. Pract., 2016 (2016), 8763205. https://doi.org/10.1155/2016/8763205 5. K. Song, D. Wu, Shared decision-making in the management of patients with inflammatory bowel disease, World J. Gastroenterol., 28 (2022), 3092–3100. https://doi.org/10.3748%2Fwjg.v28.i26.3092
|
|