Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing
-
Published:2024
Issue:2
Volume:21
Page:2407-2431
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Zhang Xiaowei1, Tan Jiayu1, Zhang Xinyu1, Pandey Kritika2, Zhong Yuqing1, Wu Guitao3, He Kejun1
Affiliation:
1. The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China 2. Virginia Commonwealth University, USA 3. Guangzhou Women and Children's Hospital, Guangzhou, China
Abstract
<abstract>
<p><italic>Background:</italic> Aggrephagy is a lysosome-dependent process that degrades misfolded protein condensates to maintain cancer cell homeostasis. Despite its importance in cellular protein quality control, the role of aggrephagy in glioma remains poorly understood. <italic>Objective:</italic> To investigate the expression of aggrephagy-related genes (ARGs) in glioma and in different cell types of gliomas and to develop an ARGs-based prognostic signature to predict the prognosis, tumor microenvironment, and immunotherapy response of gliomas. <italic>Methods:</italic> ARGs were identified by searching the Reactome database. We developed the ARGs-based prognostic signature (ARPS) using data from the Cancer Genome Atlas (TCGA, n = 669) by Lasso-Cox regression. We validated the robustness of the signature in clinical subgroups and CGGA cohorts (n = 970). Gene set enrichment analysis (GSEA) was used to identify the pathways enriched in ARPS subgroups. The correlations between ARGs and macrophages were also investigated at single cell level. <italic>Results:</italic> A total of 44 ARGs showed heterogeneous expression among different cell types of gliomas. Five ARGs (HSF1, DYNC1H1, DYNLL2, TUBB6, TUBA1C) were identified to develop ARPS, an independent prognostic factor. GSEA showed gene sets of patients with high-ARPS were mostly enriched in cell cycle, DNA replication, and immune-related pathways. High-ARPS subgroup had higher immune cell infiltration states, particularly macrophages, Treg cells, and neutrophils. APRS had positive association with tumor mutation burden (TMB) and immunotherapy response predictors. At the single cell level, we found ARGs correlated with macrophage development and identified ARGs-mediated macrophage subtypes with distinct communication characteristics with tumor cells. VIM+ macrophages were identified as pro-inflammatory and had higher interactions with malignant cells. <italic>Conclusion:</italic> We identified a novel signature based on ARGs for predicting glioma prognosis, tumor microenvironment, and immunotherapy response. We highlight the ARGs-mediated macrophages in glioma exhibit classical features.
</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference64 articles.
1. A. Darlix, S. Zouaoui, V. Rigau, F. Bessaoud, D. Figarella-Branger, H. Mathieu-Daudé, et al., Epidemiology for primary brain tumors: a nationwide population-based study, J. Neuro-Oncol., 131 (2017), 525–546. https://doi.org/10.1007/s11060-016-2318-3 2. Q. T. Ostrom, L. Bauchet, F. G. Davis, I. Deltour, J. L. Fisher, C. E. Langer, et al., The epidemiology of glioma in adults: a "state of the science" review, Neuro-Oncology, 16 (2014), 896–913. https://doi.org/10.1093/neuonc/nou087 3. R. Stupp, W. P. Mason, M. J. van den Bent, M. Welle, B. Fisher, B. Fisher, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., 352 (2005), 987–996. https://doi.org/10.1056/NEJMoa043330 4. J. M. Hyttinen, M. Amadio, J. Viiri, A. Pascale, A. Salminen, K. Kaarniranta, et al., Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases, Ageing Res. Rev., 18 (2014), 16–28. https://doi.org/10.1016/j.arr.2014.07.002 5. J. S. Valastyan, S. Lindquist, Mechanisms of protein-folding diseases at a glance, Dis. Models Mech., 7 (2014), 9–14. https://doi.org/10.1242/dmm.013474
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|