Polyphonic sound event localization and detection based on Multiple Attention Fusion ResNet

Author:

Zhang Shouming1,Zhang Yaling12,Liao Yixiao2,Pang Kunkun2,Wan Zhiyong2,Zhou Songbin2

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Institute of Intelligent Manufacturing, Guangdong Academy of Science, Guangdong Key Laboratory of Modern Control Technology, Guangzhou 510030, China

Abstract

<abstract> <p>Sound event localization and detection have been applied in various fields. Due to the polyphony and noise interference, it becomes challenging to accurately predict the sound event and their occurrence locations. Aiming at this problem, we propose a Multiple Attention Fusion ResNet, which uses ResNet34 as the base network. Given the situation that the sound duration is not fixed, and there are multiple polyphonic and noise, we introduce the Gated Channel Transform to enhance the residual basic block. This enables the model to capture contextual information, evaluate channel weights, and reduce the interference caused by polyphony and noise. Furthermore, Split Attention is introduced to the model for capturing cross-channel information, which enhances the ability to distinguish the polyphony. Finally, Coordinate Attention is introduced to the model so that the model can focus on both the channel information and spatial location information of sound events. Experiments were conducted on two different datasets, TAU-NIGENS Spatial Sound Events 2020, and TAU-NIGENS Spatial Sound Events 2021. The results demonstrate that the proposed model significantly outperforms state-of-the-art methods under multiple polyphonic and noise-directional interference environments and it achieves competitive performance under a single polyphonic environment.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3