Author:
Zheng Minjie,Su Yulai,Chen Guoquan
Abstract
<abstract>
<p>This article considered the sampled-data control issue for a dynamic positioning ship (DPS) with the Takagi-Sugeno (T-S) fuzzy model. By introducing new useful terms such as second-order term of time, an improved Lyapunov-Krasovskii function (LKF) was constructed. Additionally, the reciprocally convex method is introduced to bound the derivative of LKF. According to the constructed LKF, the sampling information during the whole sampling period was fully utilized, and less conservatism was obtained. Then, the stability condition, robust performance, mode uncertainty and sampled-data controller design were analyzed by means of the linear matrix inequality (LMI). Finally, an example was given to demonstrate the effectiveness of the proposed method.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference46 articles.
1. H. R. Karimi, Y. Lu, Guidance and control methodologies for marine vehicles: A survey, Control Eng. Pract., 111 (2021), 104785. https://doi.org/10.1016/j.conengprac.2021.104785
2. T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley, 2011.
3. J. C. Patra, D. Wang, Ship dynamic positioning control system: A review, in Proceedings of the 2004 American Control Conference, (2004).
4. K. D. Do, Global robust and adaptive output feedback control for a marine dynamic positioning of surface ships, J. Mar. Sci. Appl., 10 (2011), 325–332. https://doi.org/10.1007/s11804-011-1076-z
5. Y. Su, C. Zheng, P. Mercorelli, Nonlinear PD fault-tolerant control for dynamic positioning of ships with actuator constraints, IEEE/ASME Trans. Mech., 22 (2017), 1132−31142. https://doi.org/10.1109/TMECH.2016.2603538