Mathematical modeling the gene mechanism of colorectal cancer and the effect of radiation exposure

Author:

Li Lingling12,Hu Yulu1,Li Xin1,Tian Tianhai3

Affiliation:

1. School of Science, Xi'an Polytechnic University, Xi'an 710048, China

2. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710048, China

3. School of Mathematics, Monash University, Melbourne Vic 3800, Australia

Abstract

<abstract> <p>Cancer is the result of continuous accumulation of gene mutations in normal cells. The number of mutations is different in different types of cancer and even in different patients with the same type of cancer. Therefore, studying all possible numbers of gene mutations in malignant cells is of great value for the understanding of tumorigenesis and the treatment of cancer. To this end, we applied a stochastic mathematical model considering the clonal expansion of any premalignant cells with different mutations to analyze the number of gene mutations in colorectal cancer. The age-specific colorectal cancer incidence rates from the Surveillance, Epidemiology and End Results (SEER) registry in the United States and the Life Span Study (LSS) in Nagasaki and Hiroshima, Japan are chosen to test the reasonableness of the model. Our fitting results indicate that the transformation from normal cells to malignant cells may undergo two to five driver mutations for colorectal cancer patients without radiation-exposed environment, two to four driver mutations for colorectal cancer patients with low level radiation-exposure, and two to three driver mutations for colorectal cancer patients with high level radiation-exposure. Furthermore, the net growth rate of the mutated cells with radiation-exposure was is higher than that of the mutated cells without radiation-exposure for the models with two to five driver mutations. These results suggest that radiation environment may affect the clonal expansion of cells and significantly affect the development of tumors.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3