Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells

Author:

Alvarado Jose E. Zamora12,McCloskey Kara E.12,Gopinathan Ajay23

Affiliation:

1. School of Engineering, University of California Merced, Merced, CA 95343, USA

2. Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA

3. Department of Physics, University of California Merced, Merced, CA 95343, USA

Abstract

<p>Vascular cells self-organize into unique structures guided by cell proliferation, migration, and/or differentiation from neighboring cells, mechanical factors, and/or soluble signals. However, the relative contribution of each of these factors remains unclear. Our objective was to develop a computational model to explore the different factors affecting the emerging micropatterns in 2D. This was accomplished by developing a stochastic on-lattice population-based model starting with vascular progenitor cells with the potential to proliferate, migrate, and/or differentiate into either endothelial cells or smooth muscle cells. The simulation results yielded patterns that were qualitatively and quantitatively consistent with experimental observations. Our results suggested that post-differentiation cell migration and proliferation when balanced could generate between 30–70% of each cell type enabling the formation of vascular patterns. Moreover, the cell-to-cell sensing could enhance the robustness of this patterning. These findings computationally supported that 2D patterning is mechanistically similar to current microfluidic platforms that take advantage of the migration-directed self-assembly of mature endothelial and mural cells to generate perfusable 3D vasculature in permissible hydrogel environments and suggest that stem or progenitor cells may not be fully necessary components in many tissue formations like those formed by vasculogenesis.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3