Bald eagle search algorithm for solving a three-dimensional path planning problem

Author:

Zhang Yunhui12,Zhou Yongquan345,Chen Shuangxi162,Xiao Wenhong12,Wu Mingyu127

Affiliation:

1. School of Internet, Jiaxing Vocational and Technical College, Jiaxing 314036, China

2. Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing 314036, China

3. College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China

4. Xiangsihu College of Guangxi University for Nationalities, Nanning 532100, China

5. Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China

6. Institute of System Architecture and Network Security, Zhejiang University, Hangzhou 310058, China

7. Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

Abstract

<abstract> <p>Three-dimensional path planning refers to determining an optimal path in a three-dimensional space with obstacles, so that the path is as close to the target location as possible, while meeting some other constraints, including distance, altitude, threat area, flight time, energy consumption, and so on. Although the bald eagle search algorithm has the characteristics of simplicity, few control parameters, and strong global search capabilities, it has not yet been applied to complex three-dimensional path planning problems. In order to broaden the application scenarios and scope of the algorithm and solve the path planning problem in three-dimensional space, we present a study where five three-dimensional geographical environments are simulated to represent real-life unmanned aerial vehicles flying scenarios. These maps effectively test the algorithm's ability to handle various terrains, including extreme environments. The experimental results have verified the excellent performance of the BES algorithm, which can quickly, stably, and effectively solve complex three-dimensional path planning problems, making it highly competitive in this field.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3