A robust framework for enhancing cardiovascular disease risk prediction using an optimized category boosting model

Author:

Qiu Zhaobin1,Qiao Ying12,Shi Wanyuan1,Liu Xiaoqian1

Affiliation:

1. School of Mathematics and Information Sciences, North Minzu University, Yinchuan, China

2. Ningxia Collaborative Innovation Center for Scientific Computing and Intelligent Information Processing, North Minzu University, Yinchuan, China

Abstract

<abstract> <p>Cardiovascular disease (CVD) is a leading cause of mortality worldwide, and it is of utmost importance to accurately assess the risk of cardiovascular disease for prevention and intervention purposes. In recent years, machine learning has shown significant advancements in the field of cardiovascular disease risk prediction. In this context, we propose a novel framework known as CVD-OCSCatBoost, designed for the precise prediction of cardiovascular disease risk and the assessment of various risk factors. The framework utilizes Lasso regression for feature selection and incorporates an optimized category-boosting tree (CatBoost) model. Furthermore, we propose the opposition-based learning cuckoo search (OCS) algorithm. By integrating OCS with the CatBoost model, our objective is to develop OCSCatBoost, an enhanced classifier offering improved accuracy and efficiency in predicting CVD. Extensive comparisons with popular algorithms like the particle swarm optimization (PSO) algorithm, the seagull optimization algorithm (SOA), the cuckoo search algorithm (CS), K-nearest-neighbor classification, decision tree, logistic regression, grid-search support vector machine (SVM), grid-search XGBoost, default CatBoost, and grid-search CatBoost validate the efficacy of the OCSCatBoost algorithm. The experimental results demonstrate that the OCSCatBoost model achieves superior performance compared to other models, with overall accuracy, recall, and AUC values of 73.67%, 72.17%, and 0.8024, respectively. These outcomes highlight the potential of CVD-OCSCatBoost for improving cardiovascular disease risk prediction.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3