Tri-branch feature pyramid network based on federated particle swarm optimization for polyp segmentation

Author:

Fan Kefeng1,Xu Cun2,Cao Xuguang2,Jiao Kaijie2,Mo Wei2

Affiliation:

1. China Electronics Standardization Institute, Beijing 100007, China

2. School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

<abstract><p>Deep learning technology has shown considerable potential in various domains. However, due to privacy issues associated with medical data, legal and ethical constraints often result in smaller datasets. The limitations of smaller datasets hinder the applicability of deep learning technology in the field of medical image processing. To address this challenge, we proposed the Federated Particle Swarm Optimization algorithm, which is designed to increase the efficiency of decentralized data utilization in federated learning and to protect privacy in model training. To stabilize the federated learning process, we introduced Tri-branch feature pyramid network (TFPNet), a multi-branch structure model. TFPNet mitigates instability during the aggregation model deployment and ensures fast convergence through its multi-branch structure. We conducted experiments on four different public datasets$ \colon $ CVC-ClinicDB, Kvasir, CVC-ColonDB and ETIS-LaribPolypDB. The experimental results show that the Federated Particle Swarm Optimization algorithm outperforms single dataset training and the Federated Averaging algorithm when using independent scattered data, and TFPNet converges faster and achieves superior segmentation accuracy compared to other models.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3