Modeling the impact of distancing measures on infectious disease spread: a case study of COVID-19 in the Moroccan population

Author:

Lamghari Abdelkarim1,Kanté Dramane Sam Idris12,Jebrane Aissam2,Hakim Abdelilah1

Affiliation:

1. LAMAI, Faculty of Sciences and Technics, Department of Mathematics, Cadi Ayyad University, Marrakesh 40140, Morocco

2. Centrale Casablanca, Complex Systems and Interactions Research Center, Ville Verte, Bouskoura 27182, Morocco

Abstract

<abstract><p>This paper explores the impact of various distancing measures on the spread of infectious diseases, focusing on the spread of COVID-19 in the Moroccan population as a case study. Contact matrices, generated through a social force model, capture population interactions within distinct activity locations and age groups. These matrices, tailored for each distancing scenario, have been incorporated into an SEIR model. The study models the region as a network of interconnected activity locations, enabling flexible analysis of the effects of different distancing measures within social contexts and between age groups. Additionally, the method assesses the influence of measures targeting potential superspreaders (i.e., agents with a very high contact rate) and explores the impact of inter-activity location flows, providing insights beyond scalar contact rates or survey-based contact matrices.</p> <p>The results suggest that implementing intra-activity location distancing measures significantly reduces in the number of infected individuals relative to the act of imposing restrictions on individuals with a high contact rate in each activity location. The combination of both measures proves more advantageous. On a regional scale, characterized as a network of interconnected activity locations, restrictions on the movement of individuals with high contact rates was found to result in a $ 2 \% $ reduction, while intra-activity location-based distancing measures was found to achieve a $ 44 \% $ reduction. The combination of these two measures yielded a $ 48\% $ reduction.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3