Research on a vehicle and pedestrian detection algorithm based on improved attention and feature fusion

Author:

Liang Wenjie

Abstract

<abstract> <p>With the widespread integration of deep learning in intelligent transportation and various industrial sectors, target detection technology is gradually becoming one of the key research areas. Accurately detecting road vehicles and pedestrians is of great significance for the development of autonomous driving technology. Road object detection faces problems such as complex backgrounds, significant scale changes, and occlusion. To accurately identify traffic targets in complex environments, this paper proposes a road target detection algorithm based on the enhanced YOLOv5s. This algorithm introduces the weighted enhanced polarization self attention (WEPSA) self-attention mechanism, which uses spatial attention and channel attention to strengthen the important features extracted by the feature extraction network and suppress insignificant background information. In the neck network, we designed a weighted feature fusion network (CBiFPN) to enhance neck feature representation and enrich semantic information. This strategic feature fusion not only boosts the algorithm's adaptability to intricate scenes, but also contributes to its robust performance. Then, the bounding box regression loss function uses EIoU to accelerate model convergence and reduce losses. Finally, a large number of experiments have shown that the improved YOLOv5s algorithm achieves mAP@0.5 scores of 92.8% and 53.5% on the open-source datasets KITTI and Cityscapes. On the self-built dataset, the mAP@0.5 reaches 88.7%, which is 1.7%, 3.8%, and 3.3% higher than YOLOv5s, respectively, ensuring real-time performance while improving detection accuracy. In addition, compared to the latest YOLOv7 and YOLOv8, the improved YOLOv5 shows good overall performance on the open-source datasets.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3