Fault diagnosis of printing press bearing based on deformable convolution residual neural network

Author:

Wu Qiumin1,Zhu Ziqi1,Tang Jiahui2,Xia Yukang1

Affiliation:

1. Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi' an 710048, China

2. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China

Abstract

<abstract> <p>Rolling bear is a major critical component of rotating machinery, as its working condition affects the performance of the equipment. As a result, the condition monitoring and fault diagnosis of bearings get more and more attention. However, the strong background noise makes it difficult to extract the bearing fault features exactly. Furthermore, regular gradient disappearance and overfit appear in traditional network model training. Therefore, taking the printing press bearings as the research object, an intelligent fault diagnosis method based on strong background noise is proposed. This method integrates frequency slice wavelet transform (FSWT), deformable convolution and residual neural network together, and realizes the high-precision fault diagnosis of the printing press bearings. First, FSWT is used to preprocess the original vibration signal to obtain bearing fault features in the time and frequency domain, reconstruct the signal in any frequency band and describe local features accurately. Second, the ResNet is selected as the base network, and the two-dimensional time-frequency diagrams (TFD) obtained by preprocessing are used as input. For the model that has a poor ability to extract subtle features under strong background noise, the deformable convolution layer is introduced to reconstruct the convolution layer of ResNet, called deformable convolution residual neural network (DC-ResNet). Finally, the effectiveness of this method is verified by using the data sets collected under experimental conditions and actual working conditions for fault diagnosis of the printing press. The results show that the DC-ResNet can classify different bearing faults under strong background noise, and the accuracy and stability are greatly improved, which the accuracy meets 93.90%. The intelligent fault diagnosis with high-precision of printing press bearings under complex working conditions is realized by the proposed method.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3