Author:
Davydov Alexander A.,Marcugini Stefano,Pambianco Fernanda
Abstract
<p style='text-indent:20px;'>The weight distribution of the cosets of maximum distance separable (MDS) codes is considered. In 1990, P.G. Bonneau proposed a relation to obtain the full weight distribution of a coset of an MDS code with minimum distance <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula> using the known numbers of vectors of weights <inline-formula><tex-math id="M2">\begin{document}$ \le d-2 $\end{document}</tex-math></inline-formula> in this coset. In this paper, the Bonneau formula is transformed into a more structured and convenient form. The new version of the formula allows to consider effectively cosets of distinct weights <inline-formula><tex-math id="M3">\begin{document}$ W $\end{document}</tex-math></inline-formula>. (The weight <inline-formula><tex-math id="M4">\begin{document}$ W $\end{document}</tex-math></inline-formula> of a coset is the smallest Hamming weight of any vector in the coset.) For each of the considered <inline-formula><tex-math id="M5">\begin{document}$ W $\end{document}</tex-math></inline-formula> or regions of <inline-formula><tex-math id="M6">\begin{document}$ W $\end{document}</tex-math></inline-formula>, special relations more simple than the general ones are obtained. For the MDS code cosets of weight <inline-formula><tex-math id="M7">\begin{document}$ W = 1 $\end{document}</tex-math></inline-formula> and weight <inline-formula><tex-math id="M8">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula> we obtain formulas of the weight distributions depending only on the code parameters. This proves that all the cosets of weight <inline-formula><tex-math id="M9">\begin{document}$ W = 1 $\end{document}</tex-math></inline-formula> (as well as <inline-formula><tex-math id="M10">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula>) have the same weight distribution. The cosets of weight <inline-formula><tex-math id="M11">\begin{document}$ W = 2 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M12">\begin{document}$ W = d-2 $\end{document}</tex-math></inline-formula> may have different weight distributions; in this case, we proved that the distributions are symmetrical in some sense. The weight distributions of the cosets of MDS codes corresponding to arcs in the projective plane <inline-formula><tex-math id="M13">\begin{document}$ \mathrm{PG}(2,q) $\end{document}</tex-math></inline-formula> are also considered. For MDS codes of covering radius <inline-formula><tex-math id="M14">\begin{document}$ R = d-1 $\end{document}</tex-math></inline-formula> we obtain the number of the weight <inline-formula><tex-math id="M15">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula> cosets and their weight distribution that gives rise to a certain classification of the so-called deep holes. We show that any MDS code of covering radius <inline-formula><tex-math id="M16">\begin{document}$ R = d-1 $\end{document}</tex-math></inline-formula> is an almost perfect multiple covering of the farthest-off points (deep holes); moreover, it corresponds to an optimal multiple saturating set in the projective space <inline-formula><tex-math id="M17">\begin{document}$ \mathrm{PG}(N,q) $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory