Author:
Wu Tingting,Zhu Shixin,Liu Li,Li Lanqiang
Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula> be a finite field with character <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, the multiplicative group <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}_{q}^{*} = \mathbb{F}_{q}\setminus\{0\} $\end{document}</tex-math></inline-formula> is decomposed into a mutually disjoint union of <inline-formula><tex-math id="M4">\begin{document}$ \gcd(6l^mp^n,q-1) $\end{document}</tex-math></inline-formula> cosets over subgroup <inline-formula><tex-math id="M5">\begin{document}$ <\xi^{6l^mp^n}> $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ \xi $\end{document}</tex-math></inline-formula> is a primitive element of <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>. Based on the decomposition, the structure of constacyclic codes of length <inline-formula><tex-math id="M8">\begin{document}$ 6l^mp^n $\end{document}</tex-math></inline-formula> over finite field <inline-formula><tex-math id="M9">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula> and their duals is established in terms of their generator polynomials, where <inline-formula><tex-math id="M10">\begin{document}$ p\neq{3} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ l\neq{3} $\end{document}</tex-math></inline-formula> are distinct odd primes, <inline-formula><tex-math id="M12">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ n $\end{document}</tex-math></inline-formula> are positive integers. In addition, we determine the characterization and enumeration of all linear complementary dual(LCD) negacyclic codes and self-dual constacyclic codes of length <inline-formula><tex-math id="M14">\begin{document}$ 6l^mp^n $\end{document}</tex-math></inline-formula> over <inline-formula><tex-math id="M15">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory