Author:
Geng Jie,Wu Huazhang,Solé Patrick
Abstract
<p style='text-indent:20px;'>This paper mainly study <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes. A Gray map from <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{Z}_{2}^{\alpha}\times\mathbb{Z}_{4}^{\beta}[u] $\end{document}</tex-math></inline-formula> to <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{Z}_{4}^{\alpha+2\beta} $\end{document}</tex-math></inline-formula> is defined, and we prove that is a weight preserving and distance preserving map. A MacWilliams-type identity between the Lee weight enumerator of a <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive code and its dual is proved. Some properties of one-weight <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes and two-weight projective <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes are discussed. As main results, some construction methods for one-weight and two-weight <inline-formula><tex-math id="M8">\begin{document}$ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $\end{document}</tex-math></inline-formula>-additive codes are studied, meanwhile several examples are presented to illustrate the methods.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献