Constructions of irredundant orthogonal arrays

Author:

Chen Guangzhou,Zhang Xiaotong

Abstract

<p style='text-indent:20px;'>An <inline-formula><tex-math id="M1">\begin{document}$ N \times k $\end{document}</tex-math></inline-formula> array <inline-formula><tex-math id="M2">\begin{document}$ A $\end{document}</tex-math></inline-formula> with entries from <inline-formula><tex-math id="M3">\begin{document}$ v $\end{document}</tex-math></inline-formula>-set <inline-formula><tex-math id="M4">\begin{document}$ \mathcal{V} $\end{document}</tex-math></inline-formula> is said to be an <i>orthogonal array</i> with <inline-formula><tex-math id="M5">\begin{document}$ v $\end{document}</tex-math></inline-formula> levels, strength <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula> and index <inline-formula><tex-math id="M7">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, denoted by OA<inline-formula><tex-math id="M8">\begin{document}$ (N,k,v,t) $\end{document}</tex-math></inline-formula>, if every <inline-formula><tex-math id="M9">\begin{document}$ N\times t $\end{document}</tex-math></inline-formula> sub-array of <inline-formula><tex-math id="M10">\begin{document}$ A $\end{document}</tex-math></inline-formula> contains each <inline-formula><tex-math id="M11">\begin{document}$ t $\end{document}</tex-math></inline-formula>-tuple based on <inline-formula><tex-math id="M12">\begin{document}$ \mathcal{V} $\end{document}</tex-math></inline-formula> exactly <inline-formula><tex-math id="M13">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> times as a row. An OA<inline-formula><tex-math id="M14">\begin{document}$ (N,k,v,t) $\end{document}</tex-math></inline-formula> is called <i>irredundant</i>, denoted by IrOA<inline-formula><tex-math id="M15">\begin{document}$ (N,k,v,t) $\end{document}</tex-math></inline-formula>, if in any <inline-formula><tex-math id="M16">\begin{document}$ N\times (k-t ) $\end{document}</tex-math></inline-formula> sub-array, all of its rows are different. Goyeneche and <inline-formula><tex-math id="M17">\begin{document}$ \dot{Z} $\end{document}</tex-math></inline-formula>yczkowski firstly introduced the definition of an IrOA and showed that an IrOA<inline-formula><tex-math id="M18">\begin{document}$ (N,k,v,t) $\end{document}</tex-math></inline-formula> corresponds to a <inline-formula><tex-math id="M19">\begin{document}$ t $\end{document}</tex-math></inline-formula>-uniform state of <inline-formula><tex-math id="M20">\begin{document}$ k $\end{document}</tex-math></inline-formula> subsystems with local dimension <inline-formula><tex-math id="M21">\begin{document}$ v $\end{document}</tex-math></inline-formula> (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of <inline-formula><tex-math id="M22">\begin{document}$ t $\end{document}</tex-math></inline-formula>-uniform states arise from these irredundant orthogonal arrays.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum k-Uniform States From Quantum Orthogonal Arrays;International Journal of Theoretical Physics;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3