Author:
Ball Simeon,Gamboa Guillermo,Lavrauw Michel
Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ C $\end{document}</tex-math></inline-formula> be a <inline-formula><tex-math id="M2">\begin{document}$ (n,q^{2k},n-k+1)_{q^2} $\end{document}</tex-math></inline-formula> additive MDS code which is linear over <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula>. We prove that if <inline-formula><tex-math id="M4">\begin{document}$ n \geq q+k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ k+1 $\end{document}</tex-math></inline-formula> of the projections of <inline-formula><tex-math id="M6">\begin{document}$ C $\end{document}</tex-math></inline-formula> are linear over <inline-formula><tex-math id="M7">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula> then <inline-formula><tex-math id="M8">\begin{document}$ C $\end{document}</tex-math></inline-formula> is linear over <inline-formula><tex-math id="M9">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula>. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over <inline-formula><tex-math id="M10">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M11">\begin{document}$ q \in \{4,8,9\} $\end{document}</tex-math></inline-formula>. We also classify the longest additive MDS codes over <inline-formula><tex-math id="M12">\begin{document}$ {\mathbb F}_{16} $\end{document}</tex-math></inline-formula> which are linear over <inline-formula><tex-math id="M13">\begin{document}$ {\mathbb F}_4 $\end{document}</tex-math></inline-formula>. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for <inline-formula><tex-math id="M14">\begin{document}$ q \in \{ 2,3\} $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference25 articles.
1. T. L. Alderson, $(6, 3)$-MDS codes over an alphabet of size $4$, Des. Codes Cryptogr, 38 (2006), 31–40.
2. S. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012), 733–748.
3. S. Ball and M. Lavrauw, Arcs in finite projective spaces, EMS Surv. Math. Sci., 6 (2019), 133–172.
4. A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, Error-Correcting Linear Codes. Classification by Isometry and Applications, Algorithms and Computation in Mathematics 18, Springer, 2006.
5. A. Blokhuis and A. E. Brouwer, Small additive quaternary codes, European J. Combin., 25 (2004), 161–167.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献