On additive MDS codes over small fields

Author:

Ball Simeon,Gamboa Guillermo,Lavrauw Michel

Abstract

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ C $\end{document}</tex-math></inline-formula> be a <inline-formula><tex-math id="M2">\begin{document}$ (n,q^{2k},n-k+1)_{q^2} $\end{document}</tex-math></inline-formula> additive MDS code which is linear over <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula>. We prove that if <inline-formula><tex-math id="M4">\begin{document}$ n \geq q+k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ k+1 $\end{document}</tex-math></inline-formula> of the projections of <inline-formula><tex-math id="M6">\begin{document}$ C $\end{document}</tex-math></inline-formula> are linear over <inline-formula><tex-math id="M7">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula> then <inline-formula><tex-math id="M8">\begin{document}$ C $\end{document}</tex-math></inline-formula> is linear over <inline-formula><tex-math id="M9">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula>. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over <inline-formula><tex-math id="M10">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M11">\begin{document}$ q \in \{4,8,9\} $\end{document}</tex-math></inline-formula>. We also classify the longest additive MDS codes over <inline-formula><tex-math id="M12">\begin{document}$ {\mathbb F}_{16} $\end{document}</tex-math></inline-formula> which are linear over <inline-formula><tex-math id="M13">\begin{document}$ {\mathbb F}_4 $\end{document}</tex-math></inline-formula>. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for <inline-formula><tex-math id="M14">\begin{document}$ q \in \{ 2,3\} $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An algebraic-coding equivalence to the maximum distance separable conjecture;Involve, a Journal of Mathematics;2024-07-17

2. Some new classes of additive MDS and almost MDS codes over finite fields;Finite Fields and Their Applications;2024-03

3. Theory of additive complementary dual codes, constructions and computations;Finite Fields and Their Applications;2023-12

4. On additive MDS codes with linear projections;Finite Fields and Their Applications;2023-10

5. Densities of codes of various linearity degrees in translation-invariant metric spaces;Designs, Codes and Cryptography;2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3