Abstract
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ m\geq3 $\end{document}</tex-math></inline-formula> be a positive integer and <inline-formula><tex-math id="M2">\begin{document}$ n = 2m $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M3">\begin{document}$ f(x) = x^{2^m+3} $\end{document}</tex-math></inline-formula> be a power permutation over <inline-formula><tex-math id="M4">\begin{document}$ {\mathrm {GF}}(2^n) $\end{document}</tex-math></inline-formula>, which is a monomial with a Niho exponent. In this paper, the differential spectrum of <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> is investigated. It is shown that the differential spectrum of <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M7">\begin{document}$ \mathbb S = \{\omega_0 = 2^{2m-1}+2^{2m-3}-1,\omega_2 = 2^{2m-2}+2^{m-1}, \omega_4 = 2^{2m-3}-2^{m-1},\omega_{2^m} = 1\} $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M8">\begin{document}$ m $\end{document}</tex-math></inline-formula> is even, and <inline-formula><tex-math id="M9">\begin{document}$ \mathbb S = \{\omega_0 = \frac{7\cdot2^{2m-2}+2^m}3, \omega_2 = 3\cdot2^{2m-3}-2^{m-2}-1, \omega_6 = \frac{2^{2m-3}-2^{m-2}}3, \omega_{2^m+2} = 1\} $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M10">\begin{document}$ m $\end{document}</tex-math></inline-formula> is odd.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory