Abstract
<p style='text-indent:20px;'>We study the number <inline-formula><tex-math id="M3">\begin{document}$ R_n(t,N) $\end{document}</tex-math></inline-formula> of tuplets <inline-formula><tex-math id="M4">\begin{document}$ (x_1,\ldots, x_n) $\end{document}</tex-math></inline-formula> of congruence classes modulo <inline-formula><tex-math id="M5">\begin{document}$ N $\end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} x_1\cdots x_n \equiv t \pmod{N}. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>As a result, we derive a recurrence for <inline-formula><tex-math id="M6">\begin{document}$ R_n(t,N) $\end{document}</tex-math></inline-formula> and prove some multiplicative properties of <inline-formula><tex-math id="M7">\begin{document}$ R_n(t,N) $\end{document}</tex-math></inline-formula>. Furthermore, we apply the result to study the probability distribution of Diffie-Hellman keys used in multiparty communication. We show that this probability distribution is not uniform.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference8 articles.
1. J. B. Friedlander, Uniform distribution, exponential sums, and cryptography, Equidistributions in Number Theory, An Introduction, Nato Science Series Ⅱ. Mathematics, Physics and Chemistry, Vol. 237, Springer, Dordrecht, 2007, 29–57.
2. P. H. van der Kamp.On the Fourier transform of the greatest common divisor, INTEGERS, 13 (2013), 1-16.
3. D. Neuenschwander, Probabilistic and Statistical Methods in Cryptology: An Introduction by Selected Topics, Lecture Notes in Computer Science, Vol. 3028, Springer-Verlag, Berlin, 2004.
4. R. W. K. Odoni, V. Varadharajan, P. W. Sanders.Public key distribution in matrix rings, Electronic Letters, 20 (1984), 386-387.
5. H. E. Rose., A Course in Number Theory, ${ref.volume} (1994).