On the number of distinct k-decks: Enumeration and bounds
-
Published:2021
Issue:0
Volume:0
Page:0
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
Chrisnata Johan,Kiah Han Mao,Karingula Sankeerth Rao,Vardy Alexander,Yao Eitan Yaakobi,Yao Hanwen
Abstract
<p style='text-indent:20px;'>The <i><inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula>-deck</i> of a sequence is defined as the multiset of all its subsequences of length <inline-formula><tex-math id="M3">\begin{document}$ k $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M4">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> denote the number of distinct <inline-formula><tex-math id="M5">\begin{document}$ k $\end{document}</tex-math></inline-formula>-decks for binary sequences of length <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>. For binary alphabet, we determine the exact value of <inline-formula><tex-math id="M7">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> for small values of <inline-formula><tex-math id="M8">\begin{document}$ k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ n $\end{document}</tex-math></inline-formula>, and provide asymptotic estimates of <inline-formula><tex-math id="M10">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M11">\begin{document}$ k $\end{document}</tex-math></inline-formula> is fixed.</p><p style='text-indent:20px;'>Specifically, for fixed <inline-formula><tex-math id="M12">\begin{document}$ k $\end{document}</tex-math></inline-formula>, we introduce a trellis-based method to compute <inline-formula><tex-math id="M13">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> in time polynomial in <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>. We then compute <inline-formula><tex-math id="M15">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M16">\begin{document}$ k \in \{3,4,5,6\} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M17">\begin{document}$ k \leqslant n \leqslant 30 $\end{document}</tex-math></inline-formula>. We also improve the asymptotic upper bound on <inline-formula><tex-math id="M18">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula>, and provide a lower bound thereupon. In particular, for binary alphabet, we show that <inline-formula><tex-math id="M19">\begin{document}$ D_k(n) = O\bigl(n^{(k-1)2^{k-1}+1}\bigr) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}$ D_k(n) = \Omega(n^k) $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M21">\begin{document}$ k = 3 $\end{document}</tex-math></inline-formula>, we moreover show that <inline-formula><tex-math id="M22">\begin{document}$ D_3(n) = \Omega(n^6) $\end{document}</tex-math></inline-formula> while the upper bound on <inline-formula><tex-math id="M23">\begin{document}$ D_3(n) $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M24">\begin{document}$ O(n^9) $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference23 articles.
1. J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, S. Pan.String reconstruction from substring compositions, SIAM J. Discrete Math., 29 (2015), 1340-1371. 2. G. Birkhoff, Lattice Theory, American Mathematical Society, New York, 1940. 3. Z. Chang, J. Chrisnata, M. F. Ezerman, H. M. Kiah.Rates of DNA sequence profiles for practical values of read lengths, EEE Trans. Inform. Theory, 63 (2017), 7166-7177. 4. J. Chrisnata, H. M. Kiah, S. Rao, A. Vardy, E. Yaakobi and H. Yao, On the number of distinct $k$-Decks: Enumeration and bounds, International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019,519–524. 5. C. Choffrut, J. Karhumäki.Combinatorics of words, Handbook of Formal Languages, Springer, Berlin, 1 (1997), 329-438.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Codes for the Noisy Substring Channel;IEEE Transactions on Molecular, Biological, and Multi-Scale Communications;2024-06 2. DNA sequences and DNA codes;Sequences and the de Bruijn Graph;2024 3. Abelian combinatorics on words: A survey;Computer Science Review;2023-02 4. Dimensions of Channel Coding: From Theory to Algorithms to Applications;IEEE Journal on Selected Areas in Information Theory;2023
|
|