A new twofold Cornacchia-type algorithm and its applications

Author:

Wang Bei,Ouyang Yi,Li Songsong,Hu Honggang

Abstract

<p style='text-indent:20px;'>We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z} $\end{document}</tex-math></inline-formula> and the second one in the Gaussian integer ring <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}[i] $\end{document}</tex-math></inline-formula>. We observe that <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{Z}[i] $\end{document}</tex-math></inline-formula> in the second sub-algorithm can be replaced by another Euclidean domain <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{Z}[\omega] $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M5">\begin{document}$ (\omega = \frac{-1+\sqrt{-3}}{2}) $\end{document}</tex-math></inline-formula>. As a consequence, we design a new twofold Cornacchia-type algorithm with a theoretic upper bound of output <inline-formula><tex-math id="M6">\begin{document}$ C\cdot n^{1/4} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M7">\begin{document}$ C = \frac{3+\sqrt{3}}{2}\sqrt{1+|r|+|s|} $\end{document}</tex-math></inline-formula> with small values <inline-formula><tex-math id="M8">\begin{document}$ r, s $\end{document}</tex-math></inline-formula> given by the curves.</p><p style='text-indent:20px;'>The new twofold algorithm can be used to compute <inline-formula><tex-math id="M9">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decompositions on two classes of curves. First it gives a new and unified method to compute all <inline-formula><tex-math id="M10">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decompositions on <inline-formula><tex-math id="M11">\begin{document}$ j $\end{document}</tex-math></inline-formula>-invariant <inline-formula><tex-math id="M12">\begin{document}$ 0 $\end{document}</tex-math></inline-formula> elliptic curves over <inline-formula><tex-math id="M13">\begin{document}$ \mathbb{F}_{p^2} $\end{document}</tex-math></inline-formula>. Second it can be used to compute the <inline-formula><tex-math id="M14">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decomposition on the Jacobian of the hyperelliptic curve defined as <inline-formula><tex-math id="M15">\begin{document}$ \mathcal{C}/\mathbb{F}_{p}:y^{2} = x^{6}+ax^{3}+b $\end{document}</tex-math></inline-formula>, which has an endomorphism <inline-formula><tex-math id="M16">\begin{document}$ \phi $\end{document}</tex-math></inline-formula> with the characteristic equation <inline-formula><tex-math id="M17">\begin{document}$ \phi^2+\phi+1 = 0 $\end{document}</tex-math></inline-formula> (hence <inline-formula><tex-math id="M18">\begin{document}$ \mathbb{Z}[\phi] = \mathbb{Z}[\omega] $\end{document}</tex-math></inline-formula>). As far as we know, none of the previous algorithms can be used to compute the <inline-formula><tex-math id="M19">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decomposition on the latter class of curves.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. General 4-GLV Lattice Reduction Algorithms;2021 17th International Conference on Computational Intelligence and Security (CIS);2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3