Author:
Wang Bei,Ouyang Yi,Li Songsong,Hu Honggang
Abstract
<p style='text-indent:20px;'>We focus on exploring more potential of Longa and Sica's algorithm (ASIACRYPT 2012), which is an elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions. The algorithm consists of two sub-algorithms, the first one in the ring of integers <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z} $\end{document}</tex-math></inline-formula> and the second one in the Gaussian integer ring <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}[i] $\end{document}</tex-math></inline-formula>. We observe that <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{Z}[i] $\end{document}</tex-math></inline-formula> in the second sub-algorithm can be replaced by another Euclidean domain <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{Z}[\omega] $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M5">\begin{document}$ (\omega = \frac{-1+\sqrt{-3}}{2}) $\end{document}</tex-math></inline-formula>. As a consequence, we design a new twofold Cornacchia-type algorithm with a theoretic upper bound of output <inline-formula><tex-math id="M6">\begin{document}$ C\cdot n^{1/4} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M7">\begin{document}$ C = \frac{3+\sqrt{3}}{2}\sqrt{1+|r|+|s|} $\end{document}</tex-math></inline-formula> with small values <inline-formula><tex-math id="M8">\begin{document}$ r, s $\end{document}</tex-math></inline-formula> given by the curves.</p><p style='text-indent:20px;'>The new twofold algorithm can be used to compute <inline-formula><tex-math id="M9">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decompositions on two classes of curves. First it gives a new and unified method to compute all <inline-formula><tex-math id="M10">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decompositions on <inline-formula><tex-math id="M11">\begin{document}$ j $\end{document}</tex-math></inline-formula>-invariant <inline-formula><tex-math id="M12">\begin{document}$ 0 $\end{document}</tex-math></inline-formula> elliptic curves over <inline-formula><tex-math id="M13">\begin{document}$ \mathbb{F}_{p^2} $\end{document}</tex-math></inline-formula>. Second it can be used to compute the <inline-formula><tex-math id="M14">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decomposition on the Jacobian of the hyperelliptic curve defined as <inline-formula><tex-math id="M15">\begin{document}$ \mathcal{C}/\mathbb{F}_{p}:y^{2} = x^{6}+ax^{3}+b $\end{document}</tex-math></inline-formula>, which has an endomorphism <inline-formula><tex-math id="M16">\begin{document}$ \phi $\end{document}</tex-math></inline-formula> with the characteristic equation <inline-formula><tex-math id="M17">\begin{document}$ \phi^2+\phi+1 = 0 $\end{document}</tex-math></inline-formula> (hence <inline-formula><tex-math id="M18">\begin{document}$ \mathbb{Z}[\phi] = \mathbb{Z}[\omega] $\end{document}</tex-math></inline-formula>). As far as we know, none of the previous algorithms can be used to compute the <inline-formula><tex-math id="M19">\begin{document}$ 4 $\end{document}</tex-math></inline-formula>-GLV decomposition on the latter class of curves.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. General 4-GLV Lattice Reduction Algorithms;2021 17th International Conference on Computational Intelligence and Security (CIS);2021-11