Splitting authentication codes with perfect secrecy: New results, constructions and connections with algebraic manipulation detection codes

Author:

Paterson Maura B.,Stinson Douglas R.

Abstract

<p style='text-indent:20px;'>A splitting BIBD is a type of combinatorial design that can be used to construct splitting authentication codes with good properties. In this paper we show that a design-theoretic approach is useful in the analysis of more general splitting authentication codes. Motivated by the study of algebraic manipulation detection (AMD) codes, we define the concept of a <i>group generated</i> splitting authentication code. We show that all group-generated authentication codes have perfect secrecy, which allows us to demonstrate that algebraic manipulation detection codes can be considered to be a special case of an authentication code with perfect secrecy.</p><p style='text-indent:20px;'>We also investigate splitting BIBDs that can be "equitably ordered". These splitting BIBDs yield authentication codes with splitting that also have perfect secrecy. We show that, while group generated BIBDs are inherently equitably ordered, the concept is applicable to more general splitting BIBDs. For various pairs <inline-formula><tex-math id="M1">\begin{document}$ (k, c) $\end{document}</tex-math></inline-formula>, we determine necessary and sufficient (or almost sufficient) conditions for the existence of <inline-formula><tex-math id="M2">\begin{document}$ (v, k \times c, 1) $\end{document}</tex-math></inline-formula>-splitting BIBDs that can be equitably ordered. The pairs for which we can solve this problem are <inline-formula><tex-math id="M3">\begin{document}$ (k, c) = (3, 2), (4, 2), (3, 3) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ (3, 4) $\end{document}</tex-math></inline-formula>, as well as all cases with <inline-formula><tex-math id="M5">\begin{document}$ k = 2 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

Reference18 articles.

1. C. Blundo, A. De Santis, K. Kurosawa, W. Ogata.On a fallacious bound for authentication codes, J. Cryptol., 12 (1999), 155-159.

2. F. C. Bowditch and P. J. Dukes., Local balance in graph decompositions, preprint, arXiv: 2002.08895.

3. A. Brouwer, A. Schrijver, H. Hanani.Group divisible designs with block-size four, Discrete Math., 20 (1977), 1-10.

4. C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Second Edition (Discrete Mathematics and Its Applications), Chapman and Hall/CRC, 2007.

5. C. J. Colbourn, D. G. Hoffman, R. Rees.A new class of group divisible designs with block size three, J. Combin. Theory, Series A, 59 (1992), 73-89.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3