Author:
Paterson Maura B.,Stinson Douglas R.
Abstract
<p style='text-indent:20px;'>A splitting BIBD is a type of combinatorial design that can be used to construct splitting authentication codes with good properties. In this paper we show that a design-theoretic approach is useful in the analysis of more general splitting authentication codes. Motivated by the study of algebraic manipulation detection (AMD) codes, we define the concept of a <i>group generated</i> splitting authentication code. We show that all group-generated authentication codes have perfect secrecy, which allows us to demonstrate that algebraic manipulation detection codes can be considered to be a special case of an authentication code with perfect secrecy.</p><p style='text-indent:20px;'>We also investigate splitting BIBDs that can be "equitably ordered". These splitting BIBDs yield authentication codes with splitting that also have perfect secrecy. We show that, while group generated BIBDs are inherently equitably ordered, the concept is applicable to more general splitting BIBDs. For various pairs <inline-formula><tex-math id="M1">\begin{document}$ (k, c) $\end{document}</tex-math></inline-formula>, we determine necessary and sufficient (or almost sufficient) conditions for the existence of <inline-formula><tex-math id="M2">\begin{document}$ (v, k \times c, 1) $\end{document}</tex-math></inline-formula>-splitting BIBDs that can be equitably ordered. The pairs for which we can solve this problem are <inline-formula><tex-math id="M3">\begin{document}$ (k, c) = (3, 2), (4, 2), (3, 3) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ (3, 4) $\end{document}</tex-math></inline-formula>, as well as all cases with <inline-formula><tex-math id="M5">\begin{document}$ k = 2 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference18 articles.
1. C. Blundo, A. De Santis, K. Kurosawa, W. Ogata.On a fallacious bound for authentication codes, J. Cryptol., 12 (1999), 155-159.
2. F. C. Bowditch and P. J. Dukes., Local balance in graph decompositions, preprint, arXiv: 2002.08895.
3. A. Brouwer, A. Schrijver, H. Hanani.Group divisible designs with block-size four, Discrete Math., 20 (1977), 1-10.
4. C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Second Edition (Discrete Mathematics and Its Applications), Chapman and Hall/CRC, 2007.
5. C. J. Colbourn, D. G. Hoffman, R. Rees.A new class of group divisible designs with block size three, J. Combin. Theory, Series A, 59 (1992), 73-89.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献