Robust network formation with biological applications

Author:

Haskovec Jan1,Jan Vybíral2

Affiliation:

1. Mathematical and Computer Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

2. Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Trojanova 12, 12000 Praha, Czech Republic

Abstract

<p>We have provided new results on the structure of optimal transportation networks obtained as minimizers of an energy cost functional posed on a discrete graph. The energy consists of a kinetic (pumping) and a material (metabolic) cost term, constrained by a local mass conservation law. In particular, we have proved that every tree (i.e., graph without loops) represents a local minimizer of the energy with concave metabolic cost. For the linear metabolic cost, we have proved that the set of minimizers contains a loop-free structure. Moreover, we enriched the energy functional such that it accounts also for robustness of the network, measured in terms of the Fiedler number of the graph with edge weights given by their conductivities. We examined fundamental properties of the modified functional, in particular, its convexity and differentiability. We provided analytical insights into the new model by considering two simple examples. Subsequently, we employed the projected subgradient method to find global minimizers of the modified functional numerically. We then presented two numerical examples, illustrating how the optimal graph's structure and energy expenditure depend on the required robustness of the network.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference30 articles.

1. R. Albert, H. Jeong, A. Barabasi, Error and attack tolerance of complex networks, Nature, 406 (2000), 378–382. https://doi.org/10.1038/35019019

2. G. Albi, M. Burger, J. Haskovec, P. Markowich, M. Schlottbom, Continuum modelling of biological network formation, in N. Bellomo, P. Degond and E. Tamdor (eds.), Active Particles Vol.I–Theory, Models, Applications, Series: Modelling and Simulation in Science and Technology, Boston: Birkhäuser-Springer, (2017), 1–48. https://doi.org/10.1007/978-3-319-49996-3

3. J. P. Aubin, H. Frankowska, Set-valued analysis, In: Mutational and Morphological Analysis. Systems & Control: Foundations & Applications, Boston: Birkhäuser, 2008.

4. D. P. Bebber, J. Hynes, P. R. Darrah, L. Boddy, M. D. Fricker, Biological solutions to transport network design, Proc. Royal Soc. B, 274 (2007), 2307–2315. https://doi.org/10.1098/rspb.2007.0459

5. K. Buchin, A. Schulz, On the Number of Spanning Trees a Planar Graph Can Have, in M. de Berg and U. Meyer (eds.), Algorithms–ESA 2010. Lecture Notes in Computer Science, Berlin: Springer, (2010), 110–121. https://doi.org/10.1007/978-3-642-15775-2_10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3