Author:
Coclite Giuseppe Maria,Nitti Nicola De,Garavello Mauro,Marcellini Francesca
Abstract
<p style='text-indent:20px;'>We prove the convergence of the vanishing viscosity approximation for a class of <inline-formula><tex-math id="M2">\begin{document}$ 2\times2 $\end{document}</tex-math></inline-formula> systems of conservation laws, which includes a model of traffic flow in congested regimes. The structure of the system allows us to avoid the typical constraints on the total variation and the <inline-formula><tex-math id="M3">\begin{document}$ L^1 $\end{document}</tex-math></inline-formula> norm of the initial data. The key tool is the compensated compactness technique, introduced by Murat and Tartar, used here in the framework developed by Panov. The structure of the Riemann invariants is used to obtain the compactness estimates.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability,Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability
Reference40 articles.
1. A. Aw, M. Rascle.Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
2. C. Bardos, A. Y. le Roux, J.-C. Nédélec.First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
3. S. Bianchini, A. Bressan.Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math. (2), 161 (2005), 223-342.
4. S. Blandin, D. Work, P. Goatin, B. Piccoli, A. Bayen.A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.
5. A. Bressan., Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, ${ref.volume} (2000).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献