Convergence rates for the homogenization of the Poisson problem in randomly perforated domains

Author:

Giunti Arianna

Abstract

<p style='text-indent:20px;'>In this paper we provide converge rates for the homogenization of the Poisson problem with Dirichlet boundary conditions in a randomly perforated domain of <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^d $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ d \geqslant 3 $\end{document}</tex-math></inline-formula>. We assume that the holes that perforate the domain are spherical and are generated by a rescaled marked point process <inline-formula><tex-math id="M3">\begin{document}$ (\Phi, \mathcal{R}) $\end{document}</tex-math></inline-formula>. The point process <inline-formula><tex-math id="M4">\begin{document}$ \Phi $\end{document}</tex-math></inline-formula> generating the centres of the holes is either a Poisson point process or the lattice <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}^d $\end{document}</tex-math></inline-formula>; the marks <inline-formula><tex-math id="M6">\begin{document}$ \mathcal{R} $\end{document}</tex-math></inline-formula> generating the radii are unbounded i.i.d random variables having finite <inline-formula><tex-math id="M7">\begin{document}$ (d-2+\beta) $\end{document}</tex-math></inline-formula>-moment, for <inline-formula><tex-math id="M8">\begin{document}$ \beta &gt; 0 $\end{document}</tex-math></inline-formula>. We study the rate of convergence to the homogenized solution in terms of the parameter <inline-formula><tex-math id="M9">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>. We stress that, for low values of <inline-formula><tex-math id="M10">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>, the balls generating the holes may overlap with overwhelming probability.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability,Applied Mathematics,Computer Science Applications,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence Rates and Fluctuations for the Stokes–Brinkman Equations as Homogenization Limit in Perforated Domains;Archive for Rational Mechanics and Analysis;2024-05-22

2. Homogenization for Poisson equations in domains with concentrated holes;SUT Journal of Mathematics;2023-12-01

3. Derivation of Darcy’s law in randomly perforated domains;Calculus of Variations and Partial Differential Equations;2021-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3