Application of read-across methods as a framework for the estimation of emissions from chemical processes

Author:

Takkellapati Sudhakar,Gonzalez Michael A.

Abstract

<abstract> <p>The read-across method is a popular data gap filling technique with developed application for multiple purposes, including regulatory. Within the US Environmental Protection Agency's (US EPA) New Chemicals Program under Toxic Substances Control Act (TSCA), read-across has been widely used, as well as within technical guidance published by the Organization for Economic Co-operation and Development, the European Chemicals Agency, and the European Center for Ecotoxicology and Toxicology of Chemicals for filling chemical toxicity data gaps. Under the TSCA New Chemicals Review Program, US EPA is tasked with reviewing proposed new chemical applications prior to commencing commercial manufacturing within or importing into the United States. The primary goal of this review is to identify any unreasonable human health and environmental risks, arising from environmental releases/emissions during manufacturing and the resulting exposure from these environmental releases. The authors propose the application of read-across techniques for the development and use of a framework for estimating the emissions arising during the chemical manufacturing process. This methodology is to utilize available emissions data from a structurally similar analogue chemical or a group of structurally similar chemicals in a chemical family taking into consideration their physicochemical properties under specified chemical process unit operations and conditions. This framework is also designed to apply existing knowledge of read-across principles previously utilized in toxicity estimation for an analogue or category of chemicals and introduced and extended with a concurrent case study.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference57 articles.

1. Breivik K, Arnot JA, Brown TN, et al. (2012) Screening organic chemicals in commerce for emissions in the context of environmental and human exposure. J Environ Monit 14: 2028–2037. https://doi.org/10.1039/c2em30259d

2. Fauser P, Thomsen M, Pistocchi A, et al. (2010) Using multiple regression in estimating (semi) VOC emissions and concentrations at the European scale. Atmos Pollut Res 1: 132–140. https://doi.org/10.5094/APR.2010.017

3. ENV/JM/MONO(2006)6, No. 52, Comparison of emission estimation methods used in pollutant release and transfer registers and emission scenario documents: Case study of pulp and paper and textiles. OECD Series on testing and assessment, 2006. Available from: https://one.oecd.org/document/env/jm/mono(2006)6/en/pdf.

4. EPA, Air Emissions Factors and Quantification. Environmental Protection Agency, n.d. Available from: https://www.epa.gov/air-emissions-factors-and-quantification.

5. Smith RL, Ruiz-Mercado GJ, Meyer DE, et al. (2017) Coupling computer-aided process simulation and estimations of emissions and land use for rapid life cycle inventory modeling. ACS Sustain Chem Eng 5: 3786−3794. https://doi.org/10.1021/acssuschemeng.6b02724

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3