A novel fault-tolerant privacy-preserving cloud-based data aggregation scheme for lightweight health data

Author:

Al-Zumia Fawza A., ,Tian Yuan,Al-Rodhaan Mznah,

Abstract

<abstract> <p>Mobile health networks (MHNWs) have facilitated instant medical health care and remote health monitoring for patients. Currently, a vast amount of health data needs to be quickly collected, processed and analyzed. The main barrier to doing so is the limited amount of the computational storage resources that are required for MHNWs. Therefore, health data must be outsourced to the cloud. Although the cloud has the benefits of powerful computation capabilities and intensive storage resources, security and privacy concerns exist. Therefore, our study examines how to collect and aggregate these health data securely and efficiently, with a focus on the theoretical importance and application potential of the aggregated data. In this work, we propose a novel design for a private and fault-tolerant cloud-based data aggregation scheme. Our design is based on a future ciphertext mechanism for improving the fault tolerance capabilities of MHNWs. Our scheme is privatized via differential privacy, which is achieved by encrypting noisy health data and enabling the cloud to obtain the results of only the noisy sum. Our scheme is efficient, reliable and secure and combines different approaches and algorithms to improve the security and efficiency of the system. Our proposed scheme is evaluated with an extensive simulation study, and the simulation results show that it is efficient and reliable. The computational cost of our scheme is significantly less than that of the related scheme. The aggregation error is minimized from ${\rm{O}}\left( {\sqrt {{\bf{w + 1}}} } \right)$ in the related scheme to O(1) in our scheme.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3