Automatic measurement of fetal femur length in ultrasound images: a comparison of random forest regression model and SegNet

Author:

Zhu Fengcheng, ,Liu Mengyuan,Wang Feifei,Qiu Di,Li Ruiman,Dai Chenyang,

Abstract

<abstract> <p>The aim of this work is the preliminary clinical validation and accuracy evaluation of our automatic algorithms in assessing progression fetal femur length (FL) in ultrasound images. To compare the random forest regression model with the SegNet model from the two aspects of accuracy and robustness. In this study, we proposed a traditional machine learning method to detect the endpoints of FL based on a random forest regression model. Deep learning methods based on SegNet were proposed for the automatic measurement method of FL, which utilized skeletonization processing and improvement of the full convolution network. Then the automatic measurement results of the two methods were evaluated quantitatively and qualitatively with the results marked by doctors. 436 ultrasonic fetal femur images were evaluated by the two methods above. Compared the results of the above three methods with doctor's manual annotations, the automatic measurement method of femur length based on the random forest regression model was 1.23 ± 4.66 mm and the method based on SegNet was 0.46 ± 2.82 mm. The indicator for evaluating distance was significantly lower than the previous literature. Measurement method based SegNet performed better in the case of femoral end adhesion, low contrast, and noise interference similar to the shape of the femur. The segNet-based method achieves promising performance compared with the random forest regression model, which can improve the examination accuracy and robustness of the measurement of fetal femur length in ultrasound images.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3