Shear wave imaging and classification using extended Kalman filter and decision tree algorithm
-
Published:2021
Issue:6
Volume:18
Page:7631-7647
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Quang-Huy Tran, ,Doan Phuc Thinh,Yen Nguyen Thi Hoang,Tran Duc-Tan, , , ,
Abstract
<abstract>
<p>Shear wave ultrasound elastography is a quantitative imaging approach in soft tissues based on viscosity-elastic properties. Complex shear modulus (CSM) estimation is an effective solution to analyze tissues' physical properties for elasticity and viscosity based on the wavenumber and attenuation coefficient. CSM offers a way to detect and classify some types of soft tissues. However, CSM-based elastography inherits some obstacles, such as estimation precision and calculation complexity. This work proposes an approach for two-dimensional CSM estimation and soft tissue classification using the Extended Kalman Filter (EKF) and Decision Tree (DT) algorithm, named the EKF-DT approach. CSM estimation is obtained by applying EKF to exploit shear wave propagation at each spatial point. Afterward, the classification of tissues is done by a direct and efficient decision tree algorithm categorizing three types of normal, cirrhosis, and fibrosis liver tissues. Numerical simulation scenarios have been employed to illustrate the recovered quality and practicality of the proposed method's liver tissue classification. With the EKF, the estimated wave number and attenuation coefficient are close to the ideal values, especially the estimated wave number. The states of three liver tissue types were automatically classified by applying the DT coupled with two proposed thresholds of elasticity and viscosity: (2.310 kPa, 1.885 Pa.s) and (3.620 kPa 3.146 Pa.s), respectively. The proposed method shows the feasibility of CSM estimation based on the wavenumber and attenuation coefficient by applying the EKF. Moreover, the DT can automate the classification of liver tissue conditions by proposing two thresholds. The proposed EKF-DT method can be developed by 3D image reconstruction and empirical data before applying it in medical practice.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference50 articles.
1. J. Bercoff, A. Criton, C. C. Bacrie, J. Souquet, A. Athanasiou, ShearWave™ Elastography A new real time imaging mode for assessing quantitatively soft tissue viscoelasticity, IEEE Ultrasonics Symposium, IEEE, (2008), 321-324. 2. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, S. Y. Emelianov, Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics, Ultrasound Med. Biol., 24 (1998), 1419-1435. 3. J. L. Gennisson, T. Deffieux, M. Fink, M. Tanter, Ultrasound elastography: Principles and techniques, Diagn. Interv. Imaging, 94 (2013), 487-495. 4. E. Budelli, J. Brum, M. Bernal, T. Deffieux, M. Tanter, P. Lema, et al., A diffraction correction for storage and loss moduli imaging using radiation force based elastography, Phys. Med. Biol., 62 (2017), 91-106. 5. J. Marcon, M. Trottmann, J. R¨ubenthaler, M. D' Anastasi, C. Stief, M. Reiser, et al., Three-dimensional vs. two-dimensional shear-wave elastography of the testes-preliminary study on a healthy collective, Clin. Hemorheol. Microcirc., 64 (2016), 447-456.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|