Feature fusion and clustering for key frame extraction

Author:

Sun Yunyun, ,Li Peng,Jiang Zhaohui,Hu Sujun, , ,

Abstract

<abstract> <p>Numerous limitations of Shot-based and Content-based key-frame extraction approaches have encouraged the development of Cluster-based algorithms. This paper proposes an Optimal Threshold and Maximum Weight (OTMW) clustering approach that allows accurate and automatic extraction of video summarization. Firstly, the video content is analyzed using the image color, texture and information complexity, and video feature dataset is constructed. Then a Golden Section method is proposed to determine the threshold function optimal solution. The initial cluster center and the cluster number <italic>k</italic> are automatically obtained by employing the improved clustering algorithm. k-clusters video frames are produced with the help of K-MEANS algorithm. The representative frame of each cluster is extracted using the Maximum Weight method and an accurate video summarization is obtained. The proposed approach is tested on 16 multi-type videos, and the obtained key-frame quality evaluation index, and the average of Fidelity and Ratio are 96.11925 and 97.128, respectively. Fortunately, the key-frames extracted by the proposed approach are consistent with artificial visual judgement. The performance of the proposed approach is compared with several state-of-the-art cluster-based algorithms, and the Fidelity are increased by 12.49721, 10.86455, 10.62984 and 10.4984375, respectively. In addition, the Ratio is increased by 1.958 on average with small fluctuations. The obtained experimental results demonstrate the advantage of the proposed solution over several related baselines on sixteen diverse datasets and validated that proposed approach can accurately extract video summarization from multi-type videos.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opposition-based optimized max pooled 3D convolutional features for action video retrieval;International Journal of Information Technology;2024-08-12

2. A Deep Learning Framework for Monitoring Audience Engagement in Online Video Events;International Journal of Computational Intelligence Systems;2024-05-21

3. Static video summarization with multi-objective constrained optimization;Journal of Ambient Intelligence and Humanized Computing;2024-04

4. A comparative analysis on major key-frame extraction techniques;Multimedia Tools and Applications;2024-02-13

5. Superheat Degree Category Refinement of Aluminum Electrolysis Cell Using Flame Hole Video Apparent Spatio-Temporal Feature Clustering Network;2023 China Automation Congress (CAC);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3