Author:
Wang Shuangte, ,Yu Hengguo, ,
Abstract
<abstract><p>In the paper, stability and bifurcation behaviors of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response are studied theoretically and numerically. Mathematical theory works mainly give some critical threshold conditions to guarantee the existence and stability of all possible equilibrium points, and the occurrence of Hopf bifurcation and Bogdanov-Takens bifurcation. Numerical simulation works mainly display that the Bazykin's predator-prey ecosystem has complex dynamic behaviors, which also directly proves that the theoretical results are effective and feasible. Furthermore, it is easy to see from numerical simulation results that some key parameters can seriously affect the dynamic behavior evolution process of the Bazykin's predator-prey ecosystem. Moreover, limit cycle is proposed in view of the supercritical Hopf bifurcation. Finally, it is expected that these results will contribute to the dynamical behaviors of predator-prey ecosystem.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献