High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates

Author:

Hendy A.S.12,De Staelen R.H.34,Aldraiweesh A.A.5,Zaky M.A.56

Affiliation:

1. Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg 620002, Russia

2. Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt

3. Beheer en Algemene Directie, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium

4. Research Department, Ghent University, Sint-Pietersnieuwstraat 25, B-9000 Ghent, Belgium

5. Educational Technology Department, College of Education, King Saud University, Riyadh, Saudi Arabia

6. Department of Applied Mathematics, National Research Centre, Dokki, Cairo 12622, Egypt

Abstract

<abstract><p>A coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-$ 1_{\sigma} $ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials $ N $. Some numerical experiments are proposed to support the theoretical results.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3