Author:
Wei Yunfeng, ,Yang Hongwei,Yu Hongwang,
Abstract
<abstract><p>In this article, we study the weighted Lane-Emden equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} {\rm div}_{G}\big(\omega_{1}(z)|\nabla_{G}u|^{p-2}\nabla_{G}u\big) = \omega_{2}(z)|u|^{q-1}u, \ z = (x, y)\in \mathbb{R}^{N} = \mathbb{R}^{N_{1}}\times\mathbb{R}^{N_{2}}, \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference32 articles.
1. C. T. Anh, J. Lee, B. K. My, On the classification of solutions to an elliptic equation involving the Grushin operator, Complex Var. Elliptic Equ., 63 (2018), 671-688.
2. I. Birindelli, I. Capuzzo Dolcetta, A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308.
3. C. S. Chen, Liouville type theorem for stable solutions of $p$-Laplace equation in $\mathbb{R}^{N}$, Appl. Math. Lett., 68 (2017), 62-67.
4. C. S. Chen, H. X. Song, H. W. Yang, Liouville-type theorems for stable solutions of singular quasilinear in $\mathbb{R}^{N}$, Electron. J. Differential Equations, 2018 (2018), 1-11.
5. C. Cowan, M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献