Direct connection between Navier and spherical harmonic kernels in elasticity

Author:

Labropoulou Dimitra,Vafeas Panayiotis,Dassios George

Abstract

<abstract> <p>Linear isotropic elasticity is an interesting branch of continuum mechanics, described by the fundamental laws of Hooke and Newton, which are combined in order to construct the governing generalized Navier equation of the displacement within any material. Implying time-independence and in the absence of external body forces, the latter is reduced to the corresponding form of a homogeneous second-order partial differential equation, whose solution is given via the Papkovich differential representation, which expresses the displacement field in terms of harmonic functions. On the other hand, spherical geometry provides the most widely used framework in real-life applications, concerning interior and exterior problems in elasticity. The present work aims to provide a little progress, by producing ready-to-use basic functions for linear isotropic elasticity in spherical coordinates. Hence, we calculate the Papkovich eigensolutions, generated by the spherical harmonic eigenfunctions, obtaining connections between Navier and spherical harmonic kernels. A set of useful results are provided at the end of the paper in the form of examples, regarding the evaluation of displacement field inside and outside a sphere.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference41 articles.

1. C. Truesdell, Mechanics of Solids Ⅱ (in Encyclopedia of Physics, vol. VIa/2), Springer, New York, 1972. https://doi.org/10.1007/978-3-642-69567-4

2. T. C. T. Ting, Anisotropic Elasticity. Theory and Applications, Oxford University Press, New York, 1996.

3. P. M. Naghdi, A. J. M. Spencer, A. H. England, Non-linear Elasticity and Theoretical Mechanics, Oxford University Press, Oxford, 1994.

4. I. S. Sokolnikoff, R. D. Specht, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1946.

5. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3