Diagnosis of attention deficit hyperactivity disorder: A deep learning approach

Author:

Alsharif Nizar12,Al-Adhaileh Mosleh Hmoud13,Al-Yaari Mohammed14

Affiliation:

1. King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia

2. Department of Computer Engineering and Science, Albaha University, Albaha 42331, Saudi Arabia

3. Deanship of e-learning and information technology, King Faisal University, P.O. Box 4000, Al-Ahsa 31982, Saudi Arabia

4. Chemical Engineering Department, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia

Abstract

<abstract> <p>In recent years, there has been significant interest in the analysis and classification of brain dis-orders using electroencephalography (EEG). We presented machine learning and deep learning (DL) frameworks that integrate an EEG-based brain network with various DL models to diagnose attention deficit hyperactivity disorder (ADHD). By incorporating an objective biomarker into the diagnostic process, the accuracy and effectiveness of diagnosis could be enhanced. We used public EEG datasets from 61 ADHD youngsters and 60 normally developing children. The raw EEG data underwent preprocessing, including the application of filters in clinically relevant frequency bands and notch filters. From the preprocessed EEG segments, statistical features (e.g., standard deviation, kurtosis) and spectral features (e.g., entropy) were extracted. Principal component analysis (PCA) and chi-square with PCA were used as feature selection methods to obtain the most useful features and keep them. The machine learning models achieved the highest accuracy result of 94.86% by utilizing support vector machines (SVM) with PCA features. Furthermore, integrating models combining a convolutional neural network (CNN) with bidirectional long short-term memory (BiLSTM) networks, and gated recurrent unit-Transformer (GRU-Transformer block) with Chi-square and PCA features achieved accuracies of 94.50% and 95.59%, respectively. The suggested framework demonstrated a wide range of applicability in addressing the identification of ADHD. To evaluate the performance of the proposed models, comparisons were made with existing models, and the proposed system exhibited superior performance. We enhanced EEG-based analysis and categorization of ADHD by demonstrating the capabilities of advanced artificial intelligence models in enhancing diagnostic accuracy and efficacy.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Attention Deficit Hyperactivity Disorder Using Machine Learning Models;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3