Author:
Rodbanjong Jaruwat,Thamrongthanyalak Athipat
Abstract
<abstract><p>Let $ \mathfrak M $ be an o-minimal expansion of a densely linearly ordered set and $ (S, +, \cdot, 0_S, 1_S) $ be a ring definable in $ \mathfrak M $. In this article, we develop two techniques for the study of characterizations of $ S $-modules definable in $ \mathfrak M $. The first technique is an algebraic technique. More precisely, we show that every $ S $-module definable in $ \mathfrak M $ is finitely generated. For the other technique, we prove that every $ S $-module definable in $ \mathfrak M $ admits a unique definable $ S $-module manifold topology. As consequences, we obtain the following: (1) if $ S $ is finite, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is finite; (2) if $ S $ is an infinite ring without zero divisors, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is a finite dimensional free module over $ S $; and (3) if $ \mathfrak M $ is an expansion of an ordered divisible abelian group and $ S $ is an infinite ring without zero divisors, then every $ S $-module definable in $ \mathfrak M $ is definably connected with respect to the unique definable $ S $-module manifold topology.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference16 articles.
1. C. C. Chang, H. J. Keisler, Model theory, Amsterdam-London: North-Holland Publishing Co., 1973.
2. L. van den Dries, Tame topology and o-minimal structures, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511525919
3. M. J. Edmundo, Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra, 185 (2003), 103–145. https://doi.org/10.1016/S0022-4049(03)00085-9
4. M. J. Edmundo, Covers of groups definable in o-minimal structures, Illinois J. Math., 49 (2005), 99–120. https://doi.org/10.1215/ijm/1258138308
5. E. Hrushovski, Contributions to stable model theory, Ph.D. Dissertation, University of California, Berkeley, 1986.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献