Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder

Author:

Abbas Nadeem1,Shatanawi Wasfi123,Shatnawi Taqi A. M.3,Hasan Fady1

Affiliation:

1. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

3. Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

Abstract

<abstract> <p>In the current analysis, steady incompressible Sutterby fluid flows over a stretching cylinder are studied. The influence of variable thermal conductivity is considered in the presence of thermal slip, Darcy resistance, and sponginess. The impact of the induced magnetic field is considered to analyze the results at the cylindrical surface. The governing equations are established as partial differential equations using the boundary layer approximation. Appropriate transformations are used to convert partial differential equations into ordinary differential equations. The numerical technique, namely (bvp4c), is applied to ordinary differential equations to develop the results. The numerical results, such as heat transfer rate and skin friction, are revealed by tabular form to demonstrate the physical impact of governing factors. The physical impact of governing factors on induced magnetic hydrodynamic, velocity, and temperature profiles is presented through various graphs. The velocity function deteriorated due to the augmentation of the Sutterby fluid parameter.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3