Sensitivity analysis and design optimization of 3T rotating thermoelastic structures using IGBEM

Author:

Fahmy Mohamed Abdelsabour12,Alsulami Mohammed O.3,Abouelregal Ahmed E.45

Affiliation:

1. Adham University College, Umm Al-Qura University, Adham 28653, Makkah, Saudi Arabia

2. Faculty of Computers and Informatics, Suez Canal University, New Campus, 41522 Ismailia, Egypt

3. Department of Mathematical Sciences, Faculty of Applied Sciences Umm Al-Qura University, Makkah 24381, Saudi Arabia

4. Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayyat 72388, Saudi Arabia

5. Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract

<abstract> <p>In this study, the isogeometric boundary element method (IGBEM) based on non-uniform rational basis spline (NURBS) is used to perform shape design sensitivity and optimization of rotating three-temperature (3T) thermoelastic structures. During the optimization process, the shape design sensitivity within the IGBEM formulation was derived to include precise geometries and greater continuities. It was found through the application of the IGBEM that the shape design velocity has a significant effect on accuracy of the obtained shape design sensitivity. As a result, the developed shape design sensitivity analysis (SDSA) technique based on the considered IGBEM formulation outperforms the computational solution based on the traditional SDSA method. The isogeometric shape sensitivity and optimal design for a complicated three-temperature thermoelastic problem in rotating structures are investigated. The impact of rotation on the thermal stress sensitivity, optimal three-temperature, optimal displacement and optimal three temperature thermal stress distributions are established. It is shown that the SDSA derived using IGBEM is efficient and applicable for most three-temperature thermoelastic optimization problems.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3