Abstract
<abstract><p>In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of $ \beta = 0 $ (without the effect of growth rate) and $ u_+ = 0 $. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &U^{m-2} = \left( \frac{1}{U} \right)^{2-m}\leq Kw(z)\leq \frac{Cw(z)}{U}, \;\text{if}\;0<m<2, \\ &U^{m-2}\leq Lu_-\leq\frac{Cu_-}{U}, \;\text{if}\;m\geq 2, \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ C = max\left\{ K, L \right\} = max\left\{ \frac{a}{m-a}, (m+a)^m \right\} $ for $ a > 0 $ and $ m > a $, and $ w(z) $ is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. M. Burger, M. Di Francesco, Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288–1315. http://dx.doi.org/10.1137/050637923
2. S. Choi, Y. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090. http://dx.doi.org/10.1016/j.jmaa.2020.124090
3. C. Deng, T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differ. Equations, 257 (2014), 1311–1332. http://dx.doi.org/10.1016/j.jde.2014.05.014
4. M. Ghani, Analysis of degenerate Burgers' equations involving small perturbation and large wave amplitude, Math. Method. Appl. Sci., 46 (2023), 13781–13796. http://dx.doi.org/10.1002/mma.9289
5. M. Ghani, Asymptotic stability of singular traveling waves to degenerate advection-diffusion equations under small perturbation, Differ. Equ. Dyn. Syst., in press. http://dx.doi.org/10.1007/s12591-022-00602-1