Numerical analysis of fractional heat transfer and porous media equations within Caputo-Fabrizio operator

Author:

Jawarneh Yousef1,Yasmin Humaira2,Al-Sawalha M. Mossa1,Shah Rasool3,Khan Asfandyar4

Affiliation:

1. Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia

2. Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia

3. Department of Computer Science and Mathematics, Lebanese American University, Beirut Lebanon

4. Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan

Abstract

<abstract><p>This paper presents a comparative study of two popular analytical methods, namely the Homotopy Perturbation Transform Method (HPTM) and the Adomian Decomposition Transform Method (ADTM), to solve two important fractional partial differential equations, namely the fractional heat transfer and porous media equations. The HPTM uses a perturbation approach to construct an approximate solution, while the ADTM decomposes the solution into a series of functions using the Adomian polynomials. The results obtained by the HPTM and ADTM are compared with the exact solutions, and the performance of both methods is evaluated in terms of accuracy and convergence rate. The numerical results show that both methods are efficient in solving the fractional heat transfer and porous media equations, and the HPTM exhibits slightly better accuracy and convergence rate than the ADTM. Overall, the study provides a valuable insight into the application of the HPTM and ADTM in solving fractional differential equations and highlights their potential for solving complex mathematical models in physics and engineering.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3