Author:
Paul Supriya Kumar,Mishra Lakshmi Narayan
Abstract
<abstract><p>This work is devoted to the analysis of Hyers, Ulam, and Rassias types of stabilities for nonlinear fractional integral equations with $ n $-product operators. In some special cases, our considered integral equation is related to an integral equation which arises in the study of the spread of an infectious disease that does not induce permanent immunity. $ n $-product operators are described here in the sense of Riemann-Liouville fractional integrals of order $ \sigma_i \in (0, 1] $ for $ i\in \{1, 2, \dots, n\} $. Sufficient conditions are provided to ensure Hyers-Ulam, $ \lambda $-semi-Hyers-Ulam, and Hyers-Ulam-Rassias stabilities in the space of continuous real-valued functions defined on the interval $ [0, a] $, where $ 0 < a < \infty $. Those conditions are established by applying the concept of fixed-point arguments within the framework of the Bielecki metric and its generalizations. Two examples are discussed to illustrate the established results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference32 articles.
1. A. M. Wazwaz, Applications of integral equations, In: Linear and nonlinear integral equations, Berlin, Heidelberg: Springer, 2011,569–595. https://doi.org/10.1007/978-3-642-21449-3_18
2. M. A. Abdou, On a symptotic Methods for Fredholm-Volterra integral equation of the second kind in contact problems, J. Comput. Appl. Math., 154 (2003), 431–446. https://doi.org/10.1016/S0377-0427(02)00862-2
3. V. K. Pathak, L. N. Mishra, On solvability and approximating the solutions for nonlinear infinite system of fractional functional integral equations in the sequence space $\ell_p, p>1$, J. Integral Equ. Appl., 35 (2023), 443–458. https://doi.org/10.1216/jie.2023.35.443
4. V. K. Pathak, L. N. Mishra, Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations, Mathematics, 10 (2022), 2400. https://doi.org/10.3390/math10142400
5. V. C. Boffi, G. Spiga, An equation of hammerstein type arising in particle transport theory, J. Math. Phys., 24 (1983), 1625–1629. https://doi.org/10.1063/1.525857
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献